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Abstract

This work presents a numerical and experimental geometric optimization study to maximize the total heat transfer

rate between a bundle of finned or non-finned tubes in a given volume and a given external flow both for circular and

elliptic arrangements, for general staggered configurations. The optimization procedure started by recognizing the

design limited space availability as a fixed volume constraint. The experimental results were obtained for circular and

elliptic configurations with a fixed number of tubes (12), starting with an equilateral triangle configuration, which fitted

uniformly into the fixed volume with a resulting maximum dimensionless tube-to-tube spacing S=2b ¼ 1:5, where S is
the actual spacing and b is the smaller ellipse semi-axis. Several experimental configurations were built by reducing the
tube-to-tube spacings, identifying the optimal spacing for maximum heat transfer. Similarly, it was possible to inves-

tigate the existence of optima with respect to other two geometric degrees of freedom, i.e., tube eccentricity and fin-to-

fin spacing. The results are reported for air as the external fluid, in the range 8526ReL6 8520, where L is the swept
length of the fixed volume. Circular and elliptic arrangements with the same flow obstruction cross-sectional area were

compared on the basis of maximum total heat transfer. This criterion allows one to quantify the heat transfer gain in the

most isolated way possible, by studying arrangements with equivalent total pressure drops independently of the tube

cross-section shape. The first part of the paper reports two-dimensional numerical optimization results for non-finned

circular and elliptic tubes arrangements, which are validated by direct comparison with experimental measurements

with good agreement. The second part of the paper presents experimental optimization results for non-finned and

finned circular and elliptic tubes arrangements. A relative heat transfer gain of up to 20% is observed in the optimal

elliptic arrangement, as compared to the optimal circular one. Both local optimal eccentricity (S=2b ¼ 0:25 and fixed
fin-to-fin spacing) and local optimal fin-to-fin spacing (circular tube and S=2b ¼ 0:5) are shown to exist. Such findings
motivate the search for global optima with respect to tube-to-tube spacing, eccentricity and fin-to-fin spacing in future

three-dimensional numerical optimization studies.

� 2003 Published by Elsevier Ltd.
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1. Introduction

The optimization of industrial processes for maxi-

mum utilization of the available energy (exergy) has

been a very active line of scientific research in recent
43
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times. The increase in energy demand in all sectors of the

human society requires an increasingly more intelligent

use of available energy. Many industrial applications

require the use of heat exchangers with tubes arrange-

ments, either finned or non-finned, functioning as heat

exchangers in air conditioning systems, refrigeration,

heaters, radiators, etc. Such devices have to be designed

according to the availability of space in the device con-

taining them. A measure of the evolution of such
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Nomenclature

a larger ellipse semi-axis (m)

Ac minimum free flow cross-sectional area (m2)

b smaller ellipse semi-axis (m)

Ba bias limit of quantity a
cp fluid specific heat at constant pressure (J/

(kgK))

D tube diameter (m)

e ellipses eccentricity, b=a
H array height (m)

k fluid thermal conductivity (W/(mK))

L array length (m)

L=2b array length to smaller ellipses axis aspect

ratio

_mmec fluid mass flow rate entering one elemental

channel (kg/s)

nf number of fins

N number of tubes in one unit cell

Nec number of elemental channels

p pressure (N/m2)

P dimensionless pressure

PeL Peclet number based on array length

Pr fluid Prandtl number, m=a
Pa precision limit of quantity a
~qq dimensionless overall thermal conductance,

Eq. (13)

~qq� dimensionless overall thermal conductance,

Eq. (17)

Q overall heat transfer rate (W)

Qec heat transfer rate of one elemental channel

(W)

ReD Reynolds number based on tube diameter,

u1D=m
ReL Reynolds number based on array length,

u1L=m

Red Reynolds number based on fin-to-fin spac-

ing, u1d=m
S spacing between rows of tubes (m), Fig. 1

S=D dimensionless spacing between rows of

tubes (circular arrangement)

S=2b dimensionless spacing between rows of

tubes (elliptic arrangement)

t fin thickness (m)

t time (s)

T temperature (K)

T average fluid temperature (K)

u, v, w velocity components (m/s)

U , V , W dimensionless velocity components

Ua uncertainty of quantity a
W array width (m)

x, y, z cartesian coordinates (m)

X , Y , Z dimensionless cartesian coordinates

Greek symbols

a thermal diffusivity (m2/s)

e mesh convergence criterion, Eq. (22)

d fin-to-fin spacing (m)

h dimensionless temperature
�hh dimensionless average fluid temperature

m fluid kinematic viscosity (m2/s)

q density (kg/m3)

/f dimensionless fin density in direction z

Subscripts

max maximum

opt optimal

out unit cell outlet

w tube surface

1 free stream

2 R.S. Matos et al. / International Journal of Heat and Mass Transfer xxx (2003) xxx–xxx

HMT 4102 No. of Pages 13, DTD = 4.3.1
16 September 2003 Disk used

ARTICLE IN PRESS
UNCOequipment, therefore, is the reduction in size, or in oc-

cupied volume, accompanied by the maintenance or

improvement of its performance. Hence, the problem

consists of identifying a configuration that provides

maximum heat transfer for a given space [1].

Heat exchangers with finned elliptical tubes were

studied experimentally by Brauer [2], Bordalo and Sa-

boya [3], Saboya and Saboya [4], and Jang and Yang [5]

showing that besides the relative heat transfer gain ob-

served in the elliptical arrangements, as compared to the

circular ones, a relative pressure drop reduction of up to

30% was observed. Rocha et al. [6] developed a hybrid

mathematical model for finned circular and elliptic tubes

arrangements based on energy conservation and on heat

transfer coefficients obtained experimentally by a
naphthalene sublimation technique through a heat and

mass transfer analogy [4,7], and obtained numerically

the fin temperature distribution and fin efficiency in one

and two row elliptic tube and plate fin heat exchangers.

The fin efficiency results were then compared with the

results of Rosman et al. [8] for plate fin and circular heat

exchangers, and a relative fin efficiency gain of up to

18% was observed with the elliptical arrangement.

Recently, Bordalo and Saboya [3] reported pressure

drop measurements comparing elliptic and circular tube

and plate fin heat exchanger configurations, with one-,

two- and three-row arrangements. Reductions of up to

30% of the loss coefficient (pressure drop coefficient per

unit row due only to the presence of the tubes) were

observed, in favor of the elliptic configuration. The
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comparison was performed between circular and elliptic

arrangements with the same flow obstruction cross-sec-

tional area, for 2006Red 6 2000 (1:8 m=s6 u1 6

18:2 m=s, with d ¼ 1:65 mm), which cover the air ve-
locity range of interest for air conditioning applications.

It is further observed that the reduction in pressure drop

is higher as Red increases and negligible for Red � 200,

for the three-row arrangement.

The present study is a natural �next step’ following
the work presented by Matos et al. [9], where a two-di-

mensional (2-D) heat transfer analysis was performed in

non-finned circular and elliptic tubes heat exchangers.

The finite element method was used to discretize the

fluid flow and heat transfer governing equations and a 2-

D isoparametric, four-noded, linear element was imple-

mented for the finite element analysis program, FEAP

[10]. The numerical results for the equilateral triangle

staggering configuration, obtained with the new element

were then validated qualitatively by means of direct

comparison to previously published experimental results

for circular tubes heat exchangers [11]. Numerical geo-

metric optimization results showed a relative heat

transfer gain of up to 13% in the optimal elliptical ar-

rangement, as compared to the optimal circular one. The

heat transfer gain and the relative pressure drop reduc-

tion of up to 30% observed in previous studies [2–5]
UNCORREC

Fig. 1. Arrangement of finned elliptic tubes, and t
PROOF

show that the elliptical arrangement has the potential for

a considerably better overall performance than the tra-

ditional circular one.

The main focus of this work is on the experimental

geometric optimization of staggered finned circular and

elliptic tubes in a fixed volume. In the first part of the

paper, a 2-D numerical optimization procedure for non-

finned circular and elliptic arrangements is conducted

and validated by means of direct comparison to exper-

imental measurements. The second part of the paper

describes a series of experiments conducted in the lab-

oratory in the search for optimal geometric parameters

in general staggered finned circular and elliptic config-

urations for maximum heat transfer. Circular and el-

liptic arrangements with the same flow obstruction

cross-sectional area are then compared on the basis of

maximum total heat transfer. Appropriate non-dimen-

sional groups are defined and the optimization results

reported in dimensionless charts.
ED2. Theory

A typical four-row tube and plate fin heat exchanger

with a general staggered configuration is shown in Fig.

1. Fowler and Bejan [12] showed that in the laminar
T

he three-dimensional computational domain.
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regime, the flow through a large bank of cylinders can be

simulated accurately by calculating the flow through a

single channel, such as that illustrated by the unit cell

seen in Fig. 1. Because of the geometric symmetries,

there is no fluid exchange or heat transfer between ad-

jacent channels, or at the top and side surfaces. At the

bottom of each unit cell, no heat transfer is expected

across the plate fin midplane. In Fig. 1, L, H and W are

the length, height and width (tube length) of the array,

respectively. The fins are identical, where t is the thick-
ness and d is the fin-to-fin spacing.
The governing equations are the mass, momentum

and energy equations which were simplified in accor-

dance with the assumptions of three-dimensional in-

compressible steady-state laminar flow with constant

properties, for a Newtonian fluid [13]:

oU
oX

þ oV
oY

þ oW
oZ

¼ 0 ð1Þ

U
oU
oX

þ V
oU
oY

þ W
oU
oZ

¼ � oP
oX

þ 1

ReL

o2U
oX 2

�
þ o2U

oY 2
þ o2U

oZ2

�
ð2Þ

U
oV
oX

þ V
oV
oY

þ W
oV
oZ

¼ � oP
oY

þ 1

ReL

o2V
oX 2

�
þ o2V

oY 2
þ o2V

oZ2

�
ð3Þ

U
oW
oX

þ V
oW
oY

þ W
oW
oZ

¼ � oP
oZ

þ 1

ReL

o2W
oX 2

�
þ o2W

oY 2
þ o2W

oZ2

�
ð4Þ

U
oh
oX

þ V
oh
oY

þ W
oh
oZ

¼ 1

PeL

o2h
oX 2

�
þ o2h
oY 2

þ o2h
oZ2

�
ð5Þ

The symmetries present in the problem allow the

solution (computational) domain to be reduced, to one

unit cell, represented by the extended domain shown in

Fig. 1, of height (S=2þ b), and width (d=2þ t=2).
In Eqs. (1)–(5), dimensionless variables have been

defined based on appropriate physical scales as follows:

ðX ; Y ; ZÞ ¼ ðx; y; zÞ
L

; P ¼ p
qu21

ð6Þ

ðU ; V ;W Þ ¼ ðu; v;wÞ
u1

; h ¼ T � T1
Tw � T1

ReL ¼ U1L
m

and PeL ¼ U1L
a

ð7Þ

where ðx; y; zÞ are the Cartesian coordinates (m), p the
pressure (N/m2), q the fluid density (kg/m3), u1 the free

stream velocity (m/s), ðu; v;wÞ the fluid velocities (m/s), T
the temperature (K), T1 the free stream temperature

(K), Tw the tubes surface temperature (K), L the array
TED
PROOF

length in the flow direction (m), m the fluid kinematic
viscosity (m2/s) and a is the fluid thermal diffusivity (m2/

s).

The solution domain of Fig. 1 is composed by the

external fluid and half of the solid fin. The solid–fluid

interface is included in the solution domain such that

mass, momentum and energy are conserved throughout

the domain. Eqs. (1)–(5) model the fluid part of the

domain. Only the energy equation needs to be solved in

the solid part of the domain, accounting for the actual

properties of the solid material. The dimensionless en-

ergy equation for the solid fin is written as

oh
os

¼ 1

ReL

as
m

o2h
oX 2

�
þ o2h
oY 2

þ o2h
oZ2

�
ð8Þ

where a dimensionless time is defined by s ¼ t
L=u1

, t is the

time, and as is the solid fin thermal diffusivity (m2/s).

For steady-state solutions oh
os is assumed to be zero.

The solution to Eqs. (1)–(8) subject to appropriate

boundary conditions for the extended domain of Fig. 1

delivers the velocities (fluid) and temperature (fluid and

solid) fields.

The objective is to find the optimal geometry, such

that the volumetric heat transfer density is maximized,

subject to a volume constraint. The engineering design

problem starts by recognizing the finite availability of

space, i.e., an available space L	 H 	 W as a given

volume that is to be filled with a heat exchanger. To

maximize the volumetric heat transfer density means

that the overall heat transfer rate between the fluid in-

side the tubes and the fluid outside the tubes will be

maximized.

Next, the optimization study proceeds with the

identification of the degrees of freedom (variables) that

allow the maximization of the overall heat transfer rate

between the tubes and the free stream, Q. Three geo-
metric degrees of freedom in the arrangement are iden-

tified in this way, i.e.: (i) the spacing between rows of

tubes, S; (ii) the tubes eccentricity, e; and (iii) the fin-to-
fin spacing, d. The choice of such parameters follow
from the analysis of the two extremes, i.e., when they are

small or large. When S ! 0, the mass flow rate in the

elemental channel (sum of all unit cells in direction z)
decreases and, therefore Q! 0, and for S ! Smax
(maximum spacing such that the arrangement with a

certain number of elemental channels, Nec, fits in the
available space, L	 H 	 W ), the minimum free flow

cross-sectional area, Ac, increases, thus the flow velocity
decreases, the heat transfer coefficient decreases and Q
decreases. When e ! 0, the limit of staggered flat plates

is represented [14], so Q! Q
flat
plates

, and for e ! 1, the

limit of circular tubes is represented [9,11], so

Q ! Q
circular
tubes

, therefore, the variation of eccentricity al-
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lows the heat transfer performance of elliptic tubes to be

compared with flat plates and circular tubes, which is

one of the objectives of this paper. When d ! 0, the

mass flow rate in the unit cell decreases, so Q! 0, and

for d ! dmax ¼ W , the total fin surface area decreases,
and Q decreases. The behavior of S, e and d at the ex-
tremes indicate the possibility of maximum Q in the

intervals, 0 < S < Smax, 0 < e < 1 and 0 < d < W .
A comparison criterion between elliptic and circular

arrangements with the same flow obstruction cross-sec-

tional area is adopted, i.e., the circular tube diameter is

equal to two times the smaller ellipse semi-axis of the

elliptic tube. This criterion was also adopted in previous

studies [3,4,6,9]. However, the most important reason to

adopt such a criterion is the possibility to obtain

equivalent pressure drops in both arrangements, to be

able to quantify the heat transfer gain in the most iso-

lated way possible. As pointed out earlier in the text, the

difference in pressure drop for elliptic and circular ar-

rangements with identical flow obstruction cross-sec-

tional areas for Red < 200 is negligible [3], which is also

verified experimentally in the laboratory for all cases

analyzed in this paper.

In this study, numerical solutions are presented only

for non-finned tube arrangements. The problem can

then be treated in two dimensions as shown by Matos et

al. [9]. The solution domain is composed only by the

external fluid in the plane x–y, with velocities u and v.
The following boundary conditions are then specified

for the extended 2-D computational domain of Fig. 2:

ðAÞ U ¼ 1;
oV
oX

¼ 0; h ¼ 0 ð9Þ

ðBÞ oU
oY

¼ 0; V ¼ 0;
oh
oY

¼ 0 ð10Þ

ðCÞ U ¼ V ¼ 0; h ¼ 1 ð11Þ

ðDÞ oU
oX

¼ oV
oX

¼ 0;
oh
oX

¼ 0 ð12Þ

In order to represent the actual flow with boundary

conditions (A) and (D), two extra lengths need to be

added to the computational domain, upstream and

downstream, as shown in Fig. 2. The actual dimensions

of these extra lengths need to be determined by an it-

erative numerical procedure, with convergence obtained

according to a specified tolerance. Such procedure is

necessary for both 2-D and 3-D simulations.

Once the geometry of the extended computational

domain represented by the unit cell of Fig. 2 is specified,

Eqs. (1)–(3), (5)–(7) and (9)–(12) deliver the resulting

velocities, pressure and temperature fields in the domain.

The dimensionless overall thermal conductance ~qq, or
volumetric heat transfer density is defined as follows

[9,11]:
TED
PROOF

~qq ¼ Q=ðTw � T1Þ
kLHW =ð2bÞ2

ð13Þ

where the overall heat transfer rate between the finned

or non-finned tubes and the free stream, Q, has been
divided by the constrained volume, LHW ; k is the fluid
thermal conductivity (W/(mK)) and 2b ¼ D the ellipse

smaller axis or tube diameter.

A balance of energy in one elemental channel states

that

Q ¼ NecQec ¼ Nec _mmeccpðT out � T1Þ ð14Þ

where Nec is the number of elemental channels. The el-
emental channel is defined as the sum of all unit cells in

direction z. Therefore, _mmec ¼ qu1½ðS þ 2bÞ=2�ðW � nf tÞ
is the mass flow rate (kg/s) entering one elemental

channel; cp is the fluid specific heat at constant pressure
(J/(kgK)), and T out is the average fluid temperature at
the elemental channel outlet (K). The number of fins in

the arrangement is given by

nf ¼
W
t þ d

ð15Þ

The dimensionless overall thermal conductance is re-

written utilizing Eqs. (13)–(15),

~qq ¼ Nec
2
PrReL

2b
L

� �2
2b
H

S
2b

�
þ 1

�
ð1� /fÞ�hhout ð16Þ

where /f ¼ nf t
W ¼ t

tþd, is the dimensionless fin density in

direction z (06 nf t6W ), and Pr the fluid Prandtl num-

ber, m=a.
For the sake of generalizing the results of Eq. (16) for

all configurations of the type studied in this work, the

dimensionless overall thermal conductance is alterna-

tively defined as follows:

~qq� ¼
2

Nec

L
2b

� �2 H
2b

~qq

¼ PrReL
S
2b

�
þ 1

�
ð1� /fÞ�hhout ð17Þ
298
299
3. Numerical method

The numerical solution of Eqs. (1)–(3), (5)–(7) and

(9)–(12) was obtained utilizing the finite element method

[10], giving the velocities and temperature fields in the

unit cell of Fig. 2. In Eqs. (1)–(3), the terms that refer to

the third dimension, Z, were dropped, because only 2-D
solutions for non-finned arrangements are presented in

this study.

The implementation of the finite element method for

the solution of Eqs. (1)–(3) and (5) starts from obtaining

the variational (weak) form of the problem, as described
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UNCby Reddy and Gartling [15]. The weak form is discret-

ized with an �upwind’ scheme proposed by Hughes [16],
where it is possible to adequate the discrete form of the

problem to the physical characteristics of the flow. After

developing the discrete form of the problem, the re-

sulting algebraic equations are arranged in matrix form

for the steady state two dimensional problem as de-

scribed by Matos et al. [9].

For the 3-D problem of Fig. 1, the computational

domain contains both the external fluid and the solid fin.

Thus, the solution of Eq. (8) is also required in order to

obtain the complete temperature field. Instead of solving

separately for the two entities (fluid and solid) and im-
posing the same heat flux at the interface solid–fluid, as a

boundary condition, the solution is sought for the entire

domain, simultaneously, with the same set of conserva-

tion equations, imposing zero velocities in the solid fin.
4. Experiments

An experimental rig was built in the laboratory to

produce the necessary experimental data to validate the

2-D numerical optimization of non-finned arrange-

ments, and to perform the experimental optimization of

finned arrangements. Fig. 3 shows a schematic drawing
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of the experimental apparatus utilized in this study. A

small scale wind tunnel was built with naval plywood to

prevent deformations due to humidity. A test section

was conceived in modular form as a drawer, to allow for

testing many different arrangements configurations just

by changing the test module shown in Fig. 3. The in-

ternal dimensions of the test section are 175 mm · 161
mm · 152 mm. An extended region of 1000 mm was

placed before the test section to allow the flow to fully

develop before reaching the arrangement. A flow

straightener was assembled with plastic straws at the

entrance of the extended region with the purpose of

laminarizing the flow as shown in Fig. 3.

The circular and elliptic tube arrangements were

made from copper circular tubes with diameters of

15.875 mm (5/8 in.), 22.23 mm (7/8 in.), 25.4 mm (1 in.)

and 28.58 mm (1 1/8 in.) which resulted in tubes with

eccentricities e ¼ 1:0, 0.6, 0.5 and 0.4, respectively, with
a wall thickness of 0.79375 mm (1/32 in.) for all eccen-

tricities. To make the elliptic arrangements, the circular

tubes were conformed in the machine shop with an ap-

propriately designed tool. All tubes had a length of 172

mm. Electric heaters were placed inside the tubes to

simulate the heat flux originated from a hot fluid. All the

arrangements had four rows in the direction of the ex-

ternal flow, as shown in Fig. 1. Twelve tubes were then

assembled according to the design presented in Fig. 1, in
T

a wooden drawer, which is the test module shown in Fig.

3. All the fins were made from aluminum plates with

dimensions of 150 mm · 130 mm · 0.3 mm.
The electric heaters consisted of double step tubular

electric resistances with 968 X, therefore with a maxi-
mum power dissipation of 50 W with 220 V. The electric

heaters had a small enough diameter to be fitted into the

copper tubes, and were fed with a variable voltage

source (30 V, 1.4 A), in order to allow all arrangements

under comparison to have the same power input.

Twelve high precision thermistors of type YSI 44004

(resistance 2250 X at 25 �C) were placed in each test
module. All the thermistors were placed in the midplane

between the side walls of the wind tunnel and at the

midline of the elemental channels. Three thermistors

were placed at the arrangement inlet (T1–T3), five at the

outlet (T8–T12), and four at the tubes surfaces in one

elemental channel (T4–T7). An additional thermistor

(T13) was placed at the midpoint of the extended region

to measure the non-disturbed free stream temperature.

The thermistors at the inlet and outlet of the arrange-

ment permitted the determination of the vertical varia-

tion of temperature in the arrangement. In all the tests

performed, the vertical temperatures remained within a

±0.5 �C margin with respect to the average (vertical)

temperatures calculated at the inlet and outlet. The

thermistors at the tubes surfaces showed that the tem-
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perature difference between tubes in one elemental

channel is negligible, namely, within a ±0.3 �C margin

with respect to the average of the four thermistors. Fi-

nally, the additional thermistor placed at the extended

region measured free stream temperatures within a ±0.5

�C margin with respect to the measured average ar-

rangement inlet temperature, in all tests performed in

this work.

The velocity measurements were taken with a vane-

type digital anemometer, model HHF 300A (OMEGA

Engineering, Inc.), which was placed at the extended

flow region, as shown in Fig. 3. For the range of 0.1–35

m/s, the velocity bias limit is ±2.5% of the reading. The

free stream velocity was varied between 0.1 and 1 m/s in

this study. To allow for the continuous variation of the

fan velocity, a variable power source was utilized with 30

V and a maximum current of 2 A.

The pressure drop measurements were taken with a

pressure transducer, model PX137-0.3DV (OMEGA

Engineering, Inc.), with a nominal range of (0–2068.5

Pa), which was connected to a digital pressure meter,

model DP25B-S (OMEGA Engineering, Inc.). The dif-

ferential pressure maximum bias limit is ±1% of the

reading. The differential pressure measurements had the

finality of measuring the pressure drop across each ar-

rangement in all experiments, as shown in Fig. 3.

The experimental work involved the acquisition of

temperature data in real time. This task was performed

through the utilization of a computational data acqui-

sition system which consisted of a virtual data logger

AX5810 (User’s manual [17]) and four multiplexers

AX758 (User’s manual [18]) which allowed for the se-

quential data acquisition from 64 channels at interval

times of 1/256 s. All the data were processed by a suit-

able software application to convert the sensors signals

in readable temperatures.

The thermistors were calibrated in the laboratory to

determine the bias limits. The thermistors were im-

mersed in a constant temperature bath maintained by a

bath circulator, and a total of 64 temperature mea-

surements were made at 20; 30; . . . ; 80 �C. The largest
standard deviation of these measurements was 0.0005

�C, and therefore the bias limit was set at ±0.001 �C for
all thermistors; this bias limit is in agreement with the

±0.0003 �C of the same thermistors in a natural con-

vection experiment [19] and with the ±0.0005 �C bias

limit listed in an instrumentation handbook [20].

The objective of the experimental work was to eval-

uate the volumetric heat transfer density (or overall

thermal conductance) of each tested arrangement by

computing ~qq� with Eq. (17) through direct measure-

ments of u1ðReLÞ, and T out, T w and T1ð�hhoutÞ. Five runs
were conducted for each experiment. Steady-state con-

ditions were reached after 3 h in all the experiments. The

precision limit for each temperature point was computed
TED
PROOF

as two times the standard deviation of the five runs [21].

It was verified that the precision limits of all variables

involved in the calculation of ~qq� were negligible in

comparison to the precision limit of �hhout, therefore
P~qq� ffi P�hhout . The thermistors, anemometer, properties,

and lengths bias limits were found negligible in com-

parison with the precision limit of ~qq�. As a result, the
uncertainty of ~qq� was calculated by

U~qq�

~qq�
¼ P~qq�

~qq�

� �2
"

þ B~qq�

~qq�

� �2
#1=2

ffi P�hhout
�hhout

ð18Þ

where P�hhout is the precision limit of
�hhout.

The tested arrangements had a total of 12 tubes

placed inside the fixed volume LHW , with four tubes in
each unit cell (four rows). For a particular tube and

plate fin geometry, the tests started with an equilateral

triangle configuration, which filled uniformly the fixed

volume, with a resulting maximum dimensionless tube-

to-tube spacing S=2b ¼ 1:5. The spacing between tubes
was then progressively reduced, i.e., S=2b ¼ 1:5, 0.5,
0.25 and 0.1, and in this interval an optimal spacing was

found such that ~qq� was maximum. All the tested ar-
rangements had the aspect ratio L=2b ¼ 8:52.
Several free stream velocities set points were tested,

such that u1 ¼ 0:1, 0.13, 0.3, 0.65 and 1 m/s, corre-
sponding to ReL ¼ 852, 1065, 2840, 5680 and 8520, re-

spectively. The largest uncertainty calculated according

to Eq. (18) in all tests was U~qq�=~qq� ¼ 0:048.
481
5. Results and discussion

The results obtained in this study are divided in two

parts: (i) experimental validation of numerical optimi-

zation results for non-finned arrangements, and (ii) ex-

perimental optimization results for finned and non-

finned arrangements.

For the first part, the non-linear system of finite el-

ement equations was solved by the Newton–Raphson

method [15], to obtain the velocities and temperatures in

the computational domain of Fig. 2. The dimensionless

temperatures at the elemental channel outlet are then

utilized to compute the dimensionless volumetric heat

transfer density, ~qq�, defined by Eq. (17).
The numerical results obtained with Eq. (17) are

expected to be more accurate than the results that would

be obtained by computing the sum of heat fluxes at the

tubes surfaces in the elemental channel. The reason is

that the former are obtained from the finite element

temperature solution, whereas the latter are obtained

from temperature spatial derivatives which are com-

puted from post-processing the finite element solution. It

is well known that the numerical error in the derivative

of the solution is larger than the numerical error in the

solution itself.
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Fig. 4. Numerical and experimental optimization results for

non-finned arrangements.
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To obtain accurate numerical results, several mesh-

refinement tests were conducted. The monitored quan-

tity was the dimensionless overall thermal conductance,

computed with Eq. (17), according to the following

criterion:

e ¼ j~qq�;j � ~qq�;j�1j=j~qq�;jj6 0:01 ð19Þ

where j is the mesh iteration index, i.e., as j increases the
mesh is more refined. When the criterion is satisfied, the

j� 1 mesh is selected as the converged mesh.
The criterion defined by Eq. (19) was used to find the

appropriate length to the extension domain defined in

the unit cell of Fig. 2. An extra-length L had to be added
to the computational domain, upstream and down-

stream of the unit cell to represent the actual flow, and

satisfied Eq. (19), when compared to an extra-length

3L=2. Non-regular meshes were utilized in the proce-
dure, such that mesh-regions close to the tubes were

more refined, where the highest gradients in the solution

were expected. The last three mesh iterations had (a)

2730 nodes and 2508 elements, (b) 5460 nodes and 5180

elements, and (c) 5670 nodes and 5380 elements, with a

relative error below 3% when (a) and (b) are compared,

and below 1% when (b) and (c) are compared, according

to Eq. (22). Therefore, for all cases the mesh was es-

tablished to consist of 5460 nodes and 5180 elements.

The numerical results obtained with the finite element

code are validated by direct comparison to experimental

results obtained in the laboratory for circular and elliptic

arrangements. According to Fig. 1 the dimensions of the

fixed volume for the experimental optimization proce-

dure were L ¼ 135:33 mm, H ¼ 115:09 mm, W ¼ 152

mm, and D ¼ 2b ¼ 15:875 mm. All the arrangements
had Nec ¼ 6 and N ¼ 4, where N is the number of tubes

in one unit cell.

The numerical and experimental optimization pro-

cedures followed the same steps. First, for a given ec-

centricity, the dimensionless overall thermal

conductance, ~qq�, was computed with Eq. (17), for the
range 0:16 S=2b6 1:5. The same procedure was re-
peated for e ¼ 0:45, 0.5, 0.6 and 1. The numerical double
optimization results for non-finned tubes (/f ¼ 0) with

respect to tube-to-tube spacings and eccentricities are

shown in Fig. 4, together with the corresponding ex-

perimental results, for ReL ¼ 852 and 1065. The direct

comparison of ~qq�;max obtained numerically and experi-
mentally shows that the results are in good qualitative

agreement. The agreement is remarkable if we consider

that in the experiments the tested arrays had uniform

heat flux, and were not large banks of cylinders. In the

numerical simulations the domain was infinitely wider

(i.e., no influence from the wind tunnel walls) and with

isothermal tubes. However, it was observed by means of

direct temperature measurements that the uniform wall

heat flux experimental condition approximately repro-

569
TEDduced the constant wall temperature condition used in

the numerical simulations. For that, in one tube of the

array, four thermistors were placed equally spaced on

the tube surface around the two extremities and middle

sections, resulting in a total of 12 thermistors. The test

was repeated for different tubes in the experimental ar-

rays. The measured temperature on the tube surface was

within ±0.2 �C with respect to the average tube surface
temperature, considering all tests performed. The op-

tima are sharp, stressing their importance in actual en-

gineering design. The optimal tube-to-tube spacings

found numerically and experimentally for ReL ¼ 852

and 1065, were in the range 0:256 ðS=2bÞopt6 0:5, for
0:456 e6 1.
As stated in Section 2, the governing equations are

for the laminar regime. Therefore, the results of Fig. 4

were obtained for low Reynolds numbers, i.e.,

ReL ¼ 852 and 1065. For higher Reynolds numbers,

convergence to numerical solutions becomes increas-

ingly more difficult, indicating the flow is reaching a

regime of transition to turbulence.

Pressure drop measurements were performed for all

circular and elliptic arrangements under comparison.

The measurements were conducted for non-finned

(/f ¼ 0) and finned arrangements (/f ¼ 0:006), for all
tested eccentricities, i.e., e ¼ 0:4, 0.5, 0.6 and 1. For

ReL ¼ 2840, 5680 and 8520 (u1 ¼ 0:3, 0.65 and 1 m/s),
the measured pressure drops were, respectively, 0.69,

0.92 and 1.15 Pa for (/f ¼ 0), and 0.92, 1.15 and 1.38 Pa

for (/f ¼ 0:006), for all eccentricities. Hence, the pres-
sure drop measurements demonstrate that the identical

flow obstruction cross-sectional area criterion indeed

leads to similar pressure drops for all tested eccentrici-

ties. The largest Reynolds number utilized in the ex-
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Fig. 5. Experimental optimization results for non-finned ar-

rangements: (a) e ¼ 1, (b) e ¼ 0:6, and (c) e ¼ 0:5.
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periments was ReL ¼ 8520 (ReD ¼ 1000), which corre-

sponds to Red ¼ 3130 (for d ¼ 49:7 mm, /f ¼ 0:006), or
Red ¼ 104 (for d ¼ 1:65 mm [3]), therefore smaller than

the limit Red � 200 found by Bordalo and Saboya [3]

where pressure drop differences were negligible with re-

spect to changes in eccentricity. Consequently, all com-

parisons between circular and elliptic tubes performed in

this study quantify the heat transfer gain in the most

isolated way possible.

The second part of this study presents experimental

optimization results for a higher range of Reynolds

numbers, i.e., for ReL ¼ 2840, 5680 and 8520. Figs. 5

and 6 show the experimental optimization of the tube-

to-tube spacing, S=2b, for e ¼ 1, 0.6 and 0.5, respec-

tively, for non-finned and finned arrangements (/f ¼ 0

and 0.006).

The results indicate sharp optima for all eccentricities

with respect to S=2b. The influence of the variation of
ReL is also investigated. As ReL increases ~qq� increases.
The maximum is less pronounced for lower values of

ReL.
The experimental optimization procedure should

continue with respect to eccentricity. However, a closer

inspection of Figs. 5 and 6 show that for e ¼ 0:5 and 0.6,
~qq�;max with respect to ðS=2bÞopt is a little smaller for
e ¼ 0:5 than for e ¼ 0:6, but within the uncertainty

limits. Therefore ~qq�;max for ðS=2bÞopt should be obtained
also for a lower eccentricity value, e.g., e ¼ 0:4, to find a
global optimum with respect to S=2b and e. Further-
more, it was observed that ðS=2bÞopt ffi 0:25 both for
e ¼ 0:5 and 0.6 (/f ¼ 0 and /f ¼ 0:006). Therefore, in a
search for global optima with respect to S=2b and e,
additional arrangements were built, with S=2b ¼ 0:25
and e ¼ 0:4, which allowed the determination of local
optimal eccentricity for S=2b ¼ 0:25 for /f ¼ 0 and

0.006, as shown in Fig. 7. These local optima results are

a clear indication of a global optimal pair ðS=2b; eÞopt
close to the results shown in Fig. 7.

Additionaly, Figs. 5–7 show that the optimal pair

ðS=2b; eÞopt ffi ð0:25; 0:5) is ‘‘robust’’ for a wide variation
range of external flow conditions, i.e., for ReL ¼ 2840,

5680 and 8520, which pinpoints a possible general op-

timal geometry worth to be furtherly investigated.

Fig. 8 shows the existence of a local optimal fin-to-fin

spacing, /f , for S=2b ¼ 0:5 and e ¼ 1 (circular tubes). In

all the experimental results shown in Figs. 5–8, it was

observed that as ReL increases ~qq� increases, with sharper
maxima occurring at higher ReL.
From all numerical and experimental results ob-

tained in this study, it is important to stress that a heat

transfer gain of up to 20% was observed in the optimal

elliptic arrangement with e ¼ 0:5, as compared to the
optimal circular one. The presented results are also an

indication of the existence of global optima with respect

to S=2b, e and /f , for maximum heat transfer.
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Fig. 7. The optimization of (a) non-finned and (b) finned ar-

rangements with respect to eccentricity (S=2b ¼ 0:25).
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6. Conclusions

In this paper, a theoretical, numerical and experi-

mental study was conducted to demonstrate that non-

finned and finned circular and elliptic tubes heat ex-

changers can be optimized for maximum heat transfer,

under a fixed volume constraint. The internal geometric

structure of the arrangements was optimized for maxi-

mum heat transfer. Better global performance is

achieved when flow and heat transfer resistances are

minimized together, i.e., when the imperfection is dis-

tributed in space optimally [1]. Optimal distribution of

imperfection represents flow architecture, or constructal

design.

The results were presented non-dimensionally to al-

low for general application to heat exchangers of the
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Fig. 8. Local optimization of finned circular arrangements with

respect to fin-to-fin spacing (S=2b ¼ 0:5).
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type treated in this study. A suitable equivalent pressure

drop criterion permitted the comparison between cir-

cular and elliptic arrangements on a heat transfer basis

in the most isolated way possible, for Red < 200 (crite-

rion for d ¼ 1:65 mm [3]). A heat transfer gain of up to

20% was observed in the optimal elliptic arrangement, as

compared to the optimal circular one. For higher Red

(not treated in the present study), the difference of the

pressure drops between elliptic and circular arrange-

ments are not negligible, and the heat transfer gain,

combined with the relative pressure drop reduction of up

to 30% in favor of the elliptic configuration observed in

previous studies [2,3], show that the finned elliptical

arrangement has the potential for a considerably better

overall performance than the traditional circular one.

Three degrees of freedom were investigated in the

heat exchanger geometry, i.e., tube-to-tube spacing, ec-

centricity and fin-to-fin spacing. However, the experi-

mental results did not cover all possible combinations of

the three degrees of freedom in the variation ranges

studied. Global optima were found with respect to tube-

to-tube spacing and eccentricity. Regarding fin-to-fin

spacing, local optima were found for a fixed tube-to-

tube spacing (S=2b ¼ 0:5) and eccentricity (e ¼ 1).

Therefore, the present results indicate the existence of

global optima and motivate the development of a gen-

eral numerical model such that optimal arrangements of

finned tubes could be searched non-dimensionally with

respect to all three geometric degrees of freedom si-

multaneously for maximum heat transfer. Such globally

optimized configurations are expected to be of great

importance for actual heat exchangers engineering de-
sign, and for the generation of optimal flow structures in

general.
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